Welcome to the official website of CNIACS Automation Technology Co., Ltd!

ABB REB611 Local HMI Busbar and Multipurpose

Local HMI

The relay is equipped with a four-line liquid crystal display.

Depending on the chosen font and language, the number of

visible lines may vary. The display is designed for entering

parameter settings of the protection and control functions. It is

also suited for remotely controlled substations where the relay

is only occasionally accessed locally via the front panel user interface.

The display offers front-panel user interface functionality with

menu navigation and menu views. Depending on the

configuration, the relay displays the related measuring values.

The local HMI includes a push button (L/R) for local/remote

operation of the relay. When the relay is in the local mode, it can

be operated only by using the local front-panel user interface.

When the relay is in the remote mode, it can execute

commands sent from a remote location. The relay supports the

remote selection of the local/remote mode via a binary input.

This feature facilitates, for example, the use of an external

switch at the substation to ensure that all relays are in the local

mode during maintenance work and that the circuit breakers

cannot be operated remotely from the network control center.

ABB The IEC 61850 standard specifies network redundancy

The IEC 61850 standard specifies network redundancy which

improves the system availability for substation communication.

The network redundancy is based on two complementary

protocols defined in the IEC 62439-3 standard: PRP and HSR

protocols. Both the protocols are able to overcome a failure of a

link or switch with a zero switch-over time. In both the

protocols, each network node has two identical Ethernet ports

dedicated for one network connection. The protocols rely on

the duplication of all transmitted information and provide a zero

switch-over time if the links or switches fail, thus fulfilling all the

stringent real-time requirements of substation automation.

In PRP, each network node is attached to two independent

networks operated in parallel, thus providing zero time recovery

and continuous checking of redundancy to avoid failures. The

networks are completely separated to ensure failure

independence, and can have different topologies.

ABB REB611 Busbar and Multipurpose

The relay can send binary and analog signals to other devices

using the IEC 61850-8-1 GOOSE (Generic Object Oriented

Substation Event) profile. Binary GOOSE messaging can be

employed, for example, for protection and interlocking-based

protection schemes. The relay meets the GOOSE performance

requirements for tripping applications in distribution

substations, as defined by the IEC 61850 standard (<10 ms

data exchange between the devices).

For redundant Ethernet communication, the relay offers two

galvanic Ethernet network interfaces. A third port with galvanic

Ethernet network interface is also available providing

connectivity for any other Ethernet device to an IEC 61850

station bus inside a switchgear bay, for example connection of

a remote I/O. Ethernet network redundancy can be achieved

using the high-availability seamless redundancy protocol (HSR)

or the parallel redundancy protocol (PRP) or with a self-healing

ring using Rapid Spanning Tree Protocol (RSTP) in managed

switches. Ethernet redundancy can be applied to Ethernet

based IEC 61850 and Modbus protocols.

ABB REB611 series protection relays Station communication

Station communication

The 611 series protection relays support the IEC 61850 and

Modbus® communication protocols. Operational information

and controls are available through these protocols. However,

some communication functionality, for example, horizontal

communication between the protection relays, is enabled only

by the IEC 61850 communication protocol.

The IEC 61850 protocol is a core part of the relay as the

protection and control application is fully based on standard

modelling. The relay supports Edition 1 and Edition 2 versions

of the standard. With Edition 2 support, the relay has the latest

functionality modelling for substation applications and the best

interoperability for modern substations. It incorporates also full

support for standard device mode functionality supporting

different test applications. Control applications can utilize the

new safe and advanced station control authority feature.

The IEC 61850 communication implementation supports

monitoring and control functions. Additionally, parameter

settings, disturbance recordings and fault records can be

accessed using the IEC 61850 protocol. Disturbance

recordings are available to any Ethernet-based application in

the standard COMTRADE file format. The relay supports

simultaneous event reporting to five different clients on the

station bus. The relay can exchange data with other devices

using the IEC 61850 protocol.

Bently Nevada 3500/65 145988-02 Temperature Monitor

The 3500/65 monitor provides 16 channels of temperature

monitoring and accepts both resistance temperature

detector (RTD) and isolated tip thermocouple (TC)

temperature inputs.  The monitor conditions these inputs and

compares them against user-programmable alarm setpoints.

The monitor is programmed using the 3500 Rack

Configuration Software.  You can configure the 16-Channel

Temperature Monitor to accept isolated tip thermocouples,

3-wire RTD, 4-wire RTD, or a combination of TC and RTD inputs.

In Triple Modular Redundant (TMR) configurations, you must

install temperature monitors in groups of 3 adjacent

monitors. In this configuration the monitor uses 2 types of

voting to ensure accurate operation and to avoid single

point failures.

Bently 3500/65 16-Channel Temperature Monitor

Description

The 3500/65 monitor provides 16 channels of temperature

monitoring and accepts both resistance temperature

detector (RTD) and isolated tip thermocouple (TC)

temperature inputs.  The monitor conditions these inputs and

compares them against user-programmable alarm setpoints.

The monitor is programmed using the 3500 Rack

Configuration Software.  You can configure the 16-Channel

Temperature Monitor to accept isolated tip thermocouples,

3-wire RTD, 4-wire RTD, or a combination of TC and RTD inputs.

In Triple Modular Redundant (TMR) configurations, you must

install temperature monitors in groups of 3 adjacent

monitors. In this configuration the monitor uses 2 types of

voting to ensure accurate operation and to avoid single

point failures.

Specifications

Inputs

Power Consumption :3 watts nominal

Signal :Accepts from 1 to 16 RTD or isolated tip TC transducer signals.

Input Impedance :Greater than 1 MΩ for each lead input.

Transducers

TCs

Type E:-100°C to +1000°C, (-148°F to +1832°F)

Type J: 0°C to +760 °C , (32°F to +1400  °F)

Type K:0°C to +1370°C , (32°F to +2498°F)

Type T:-160°C to +400°C, ( -256°F to +752°F)

ABB UNITROL 1005 Automatic voltage regulators (AVR)

Introduction

This document is a quick installation guide for the UNITROL1005 automatic

voltage regulator. Make sure that you read and understand this document

before you install or use the product. This document is meant only as a brief

guide to the product. For detailed information on the product, refer to the User 

Manual.

Device description

UNITROL 1005 is an automatic voltage regulator (AVR) for synchronous

machines up to 80MVA. The AVR can be used for the excitation of indirectly

excited synchronous machines and motors. The AVR can also operate as a

reactive power regulator, power factor regulator or field current regulator.

Product package

Contents of the product package:

• UNITROL1005 AVR

• Special red USB cable that is used to power and to connect with the AVR.

Keep this USB cable in a safe place.

• Quick installation guide and test certificate

Make sure that all of the listed items are in the product package and that there is

no damage to the items.

ABB REB611 Inputs and outputs Busbar and Multipurpose

Access control

To protect the relay from unauthorized access and to maintain

information integrity, the relay is provided with a four-level, role

based authentication system with administrator-programmable

individual passwords for the viewer, operator, engineer and

administrator levels. The access control applies to the local

HMI, the Web HMI and PCM600.

Inputs and outputs

The relay is equipped with three phase-segregated differential

current inputs and one residual current input. The differential

and the residual current inputs are rated 1/5 A, that is, the

inputs can be connected to either 1 A or 5 A secondary current

transformers. The optional residual current input rated 0.2/1 A

is normally used in applications requiring sensitive earth-fault

protection and featuring core-balance current transformers.

The rated currents of the analog inputs can be selected in the

relay software. In addition, the binary input threshold (16…176

V DC) can be selected by adjusting the relay’s parameter settings.

All binary input and output contacts are preconfigured

according to the configuration, but can be easily reconfigured

by setting application-based parameters using the signal

configuration functionality of the local HMI and Web HMI.

See the input and output overview table and the terminal

diagram for more information about the inputs and outputs.

ABB REB611 Trip circuit supervision

Trip circuit supervision

The trip circuit supervision continuously monitors the availability

and operation of the trip circuit. It provides two open-circuit

monitoring functions that can be used to monitor the circuit

breaker’s control signal circuits. It also detects loss of circuit

breaker control voltage.

Self-supervision

The relay’s built-in self-supervision system continuously

monitors the state of the relay hardware and the operation of

the relay software. Any fault or malfunction detected is used for

alerting the operator.

A permanent relay fault blocks the protection functions to

prevent incorrect operation.

The relay has the capacity to store the records of the 128 latest

fault events. The records can be used to analyze the power

system events. Each record includes, for example, current,

residual voltage and angle values, start times of the protection

blocks and a time stamp. The fault recording can be triggered

by the start or the trip signal of a protection block, or by both.

ABB REB611 The relay has the capacity to store the records

Recorded data

The relay has the capacity to store the records of the 128 latest

fault events. The records can be used to analyze the power

system events. Each record includes, for example, current,

residual voltage and angle values, start times of the protection

blocks and a time stamp. The fault recording can be triggered

by the start or the trip signal of a protection block, or by both.

The available measurement modes include DFT, RMS and

peak-to-peak. Fault records store relay measurement values at

the moment when any protection function starts. In addition,

the maximum demand current with time stamp is separately

recorded. The records are stored in the nonvolatile memory.

Search for products

Back to Top
Product has been added to your cart