Welcome to the official website of CNIACS Automation Technology Co., Ltd!

Mitsubishi Net IR-S Infrared Flame Detector

Overview

In response to the need for modern monitoring and control systems in thermal power plants, the

Net IR-S infrared flame detector combines the proven IR-S type flame detector, which has been successfully installed in many power plants, with Mitsubishi Electric’s DIASYS Netmation control system.

The result is a flame detector product that can be used as a burner control system.

The Net IR-S has the same sensor unit as the conventional IR-S sensor and can be used with any of the following fuels: fuel oil, coal and natural gas.

In addition, the excellent detection reliability, maintainability and cost effectiveness of the IR-S sensor are maintained.

In addition, the decision circuitry is built as a module of DIASYS Netmation. It is used in conjunction with the upper layers of the Netmation to provide an easy-to-use interface.

The panel of the Net IR-S can be designed as a stand-alone flame detector system independent of the burner control system.

If you replace a conventional flame detector with this new flame detector, you can reuse your existing equipment.

Features

Highly sensitive design

High sensitivity to flame intensity enables stable www.cniacs.com detection of burner flames. Flames are detected through unlit areas.

Extended detection range

With 100 times the dynamic range of conventional products, this sensor enables stable detection of flames from slow burning to high intensity. No sensitivity adjustment of the sensor is required in the field.

Maintenance-free

A ball lens is used to eliminate the need to clean the sensor window during normal boiler operation.

Long Life Sensor

No periodic replacement is required due to the use of long-life infrared semiconductor sensor elements.

Reduced number of panels

The detector unit is compact and utilizes a space-saving design that allows one panel to contain 40 corners.

Reuse of existing boiler facilities

The boiler itself does not need to be worked on when the flame detector is replaced.

Reuse of cables    

There is no need to replace the cable between the sensor and the panel. (When UV type detection is used in an existing system)

System Configuration

Flame detector panel

Mitsubishi IR-S Infrared Flame Detector

OVERVIEW

The IR-S type infrared flame detector is an excellent high sensitivity type that excels in “detection reliability”, “maintainability” and “economy”.

It supports boiler fuel diversity and low NOx (nitrogen oxide) operation.

By detecting the “average value” and “variation” of the infrared intensity of the burner flame light transmitted to the infrared sensor (semiconductor element) via a light guide (optical fiber), the detector can distinguish between the flame and the light due to the furnace.

The detector distinguishes between flame and infrared light due to the red heat of the furnace wall and detects flame fluctuations in the burner’s ignition zone.

The IR-S type infrared flame detector has low brightness flame detection sensitivity and a wide dynamic range, so it can be used for a variety of fuels such as natural gas, heavy oil, and coal.

Features

High sensitivity design

High sensitivity to flame intensity enables www.cniacs.com stable detection of burner flames. Flame is detected through unlit areas.

Extended detection range

With 100 times the dynamic range of conventional products, this sensor enables stable detection of flames from slow burning to high intensity. No sensitivity adjustment of the sensor is required in the field.

Easy Maintenance

A spherical lens is used to eliminate the need to clean the sensor window during normal boiler operation.

Long Life Sensor

No periodic replacement is required due to the use of long-life infrared semiconductor sensor elements.

Fewer panels

The detector unit is compact and features a space-saving design that allows one panel to cover up to 40 corners.

System Configuration

Flame Detector Panel

Flame detector main unit

Mitsubishi RJ71C24-R4 Serial Communication Module

Mitsubishi PLC RJ71C24-R4 is a Mitsubishi iQ-R series network module (serial communication module) with 2-channel RS-422/485 interface.

RJ71C24-R4 Network Module (Serial Communication Module)

Product Details

【Interface

CH1:RS-422/485 standard (two-piece plug-in terminal block) CH2:RS-422/485 standard (two-piece plug-in terminal block)

Communication mode

Line: full-duplex communication/half-duplex communication

mc protocol communication: half-duplex communication

Communication protocol communication: full-duplex communication/half-duplex communication

Non-sequential protocol communication: Full-duplex communication/half-duplex communication

Bidirectional protocol communication: full-duplex communication/half-duplex communication

MC protocol communication: 1 request is processed during END processing of the CPU module of the C24 installation station.

Communication protocol communication:While sending and receiving. When a request is executed by a dedicated instruction (CPRTCL instruction).

Non-sequential/bidirectional protocol communication: Each request for transmission is executed at the time of transmission, and reception can be performed at any time.

[Connection line configuration (target device side: CPU module side)].

RS-422/485: 1:1. 1:n, n:1. m:n

[Data communication line configuration (target device side: CPU module side)]]

RS-422/485.

-MC protocol communication: 1:1. 1:n, m:n

Communication protocol communication: 1:1. n:1

Unordered protocol:1:1. 1:n, n:1

Bidirectional protocol communication: 1:1

Transmission distance (total long distance)] RS-422/485: Max. 1200m

Number of input/output points]: 32 points (I/0 allocation: intelligent 32 points)

External wiring connector] 9-pin D-sub (male) bolt-on type

DC5V internal current consumption] 0.42A

Dimensions H*W*D[mm]] 106*27.8*110Weight] 0.13kg

Mitsubishi H-100 Series Twin Shaft Gas Turbines

OVERVIEW

The H-100 series units are the world’s largest twin-shaft gas turbines, based on extensive experience in manufacturing gas turbines and the achievements of the H-25 and H-15 series developments.

They achieve high efficiency as part of a combined cycle power plant with heat recovery boilers, cogeneration systems or other combined cycle power plants.

The H-100 series has a simple cycle gas turbine output of 105 MW to 116 MW and a combined cycle output range of 150 MW to 350 MW.

As twin-shaft gas turbines, they are suitable for mechanical drive applications.

The world’s largest high-efficiency twin-shaft gas turbine

The H-100 series of gas turbines has been developed for utility and industrial customers in the 50 Hz and 60 Hz regions. The first unit went into commercial operation in 2010.

Mitsubishi Power then continued its efforts to improve the design of the H-100 series gas turbine.

While utilizing advanced elemental technologies and material technologies proven in the H-series gas turbines, we continue to strive for improved performance.

H-100 Gas Turbine

Standalone Gas Turbine Output

100-120 MW class

Combined cycle output

150-170 MW / 300-350 MW class

Stand-alone gas turbine

Fast start-up within 10 minutes

Suitable for power generation and mechanical drive applications

Mitsubishi H-25 Series Gas Turbines

Independent gas turbine output

40 MW class

Combined cycle output

60 MW / 120 MW class

Cogeneration efficiency

80% or more

High reliability

Over 6.3 million hours of total accumulated operating time

Highly Reliable Gas Turbines for Industrial Customers

The H-25 series gas turbine was developed for utility and industrial customers in the 50 Hz and 60 Hz regions.

Its first unit went into commercial operation in 1988.

Mitsubishi Power then continued its efforts to improve the design of the H-25 series gas turbine.

While utilizing advanced elemental technologies and material technologies proven in the H-series gas turbines, we continue to strive for improved performance.

Replacing steam power plants with H-25 gas turbine cogeneration plants

Mitsubishi Power’s H-25 gas turbine is part of the decarbonization solution.

Replacing steam power plants with H-25 gas turbine cogeneration plants has the potential to reduce CO2 emissions and energy consumption.

Mitsubishi Power’s Gas turbines

Mitsubishi Power’s gas turbines utilize many key cutting-edge technologies.

The gas turbine is the core component of a gas turbine combined cycle (GTCC) power plant. Mitsubishi Power has been working on the development of gas turbines for many years

Mitsubishi Power has been working on gas turbine development for many years and has integrated the latest aerodynamic, cooling design and material technologies to create a wide range of products that realize high efficiency and reliability.

Our state-of-the-art J-series gas turbine is a world leader in capacity and efficiency, with an inlet temperature of 1.600°C. The J-series gas turbine is the world’s most powerful and efficient gas turbine.

A comprehensive effort from development to manufacturing

Gas Turbines

Mitsubishi Dynamics is the only company in Japan that handles the entire production process from development, design, manufacturing, construction and commissioning to after-sales service using its own technology.

For thermal power plants that require advanced technology and reliability, we utilize our comprehensive strengths to play an important role.

Research, Development and Design

Technology development and design based on world-leading technologies

Development of the latest design and analysis tools

New product development

Design using in-house technologies

Steam Power Plants

Co-generation Plants

Paving the way for effective use of energy

Co-generation plant is a power plant to supply both electric power and heat (in most cases steam). Co-generation plants are applied as effective solution for industrial purpose power plants to factories. Utilization of surplus energy from the factory as fuel for the boiler will further enhance effective use of the available energy. Industrial purpose power plants are also functional as distributed generations. We will contribute to optimization of energy usage and to the reduction of environmental impact, based on our advanced technologies.

Engineering, Procurement and Construction (EPC) Services

Supplying power plants matching customers’ needs

We are not merely a manufacturer that designs and manufactures the equipment and devices required for thermal power plants. We also provide EPC services, including plant construction.Power plants are consisted by Main plant equipment, such as boilers, steam turbines and generators, and miscellaneous auxiliary equipment. Since we are capable both on main equipment supplier and EPC, we are capable to optimize design condition for boilers, steam turbines and generators,based on the required electrical power and heat output. One strength lies in our engagement in design, manufacturing and construction of optimal plants in an integrated manner to ensure requirement of customer, suitability to location, with the maximized performance of the major equipment.

Gas Turbine Combined Cycle (GTCC) Power Plants

About 50% Lower

High efficiency energy through combined cycle power generation

Gas turbine combined cycle (GTCC) power plants use natural gas to deliver the cleanest and highest efficiency power generation.

Plants employing state-of-the-art gas turbines of Mitsubishi Power have a 20% higher power generation efficiency than conventional coal-fired thermal power generation systems and the world’s highest level of efficiency of more than 64%. That enables CO2 emissions an approximate 50% reduction.

What is GTCC?

In the power generation method characterized by the standalone operation of a gas turbine, known as the simple or open cycle, releases exhaust gas at temperatures of around 600℃ into the atmosphere.

Combined cycle power generation improves the general thermal efficiency of the plant by recovering this high temperature exhaust gas. Many combined cycle power generation plants adopt a waste heat recovery cycle in which exhaust gas from the gas turbine is led to the waste heat recovery boiler to generate steam using recovered heat to drive the steam turbine.

Advantages and Features that Make the GTCC the Mainstream for New Thermal Power Generation Facilities

High level of thermal efficiency

In comparison with thermal efficiency of about 40% in steam power generation, combined cycle power generation features a thermal efficiency of at least 60% (with both figures on the lower heating value basis).

Environmentally-friendly

Carbon dioxide (CO2) is released in smaller quantities into the atmosphere.

Nitrogen oxides (NOx) and sulfur oxides (SOx) are released in smaller quantities into the atmosphere.

High temperature wastewater is discharged in smaller quantities into the sea.

Overview and Verification Status of T-Point 2 Demonstration Facility Gas Turbines

Purposes of the T-Point 2

To validate gas turbine technologies newly applied to achieve higher efficiency, allow operations at elevated temperatures, and reduce NOx.

To validate the reliability through long-term commercial operations of the highly efficient and environmentally friendly combined-cycle power generation.

Development of T-Point

The original T-Point demonstration facility began operation in 1997 with M501G (60 Hz), which was upgraded to M501J in 2010 and M501JAC in 2015 with response to the power industry’s demand for large-scale, high-efficiency power generation.

Since the original T-Point can not satisfy the further requirement for larger capacity and higher efficiency, we made a decision to build T-Point 2.

T-Point 2 entered full commercial operation with an enhanced JAC gas turbine from July 2020.Validation of Next Generation

Combined Cycle Power Generation

With its combination of gas turbine and steam turbine,T-Point 2 is cutting edge combined cycle power plant validation facility.

By developing next-generation technologies and validating them in T-Point 2 GTCC facilities, Mitsubishi Power helps its customers world-wide attain a stable electricity supply.

Long term demonstration of off-site plant control at T-Point 2 is conducted from the Mitsubishi Power Takasago TOMONI HUB (Analytics and Performance Center). Validation operations are run to increase the reliability of the entire plant including the main equipment such as turbines as well as auxiliary equipment such as pumps and fans. In addition, various applications of a suite of intelligent solutions TOMONI™ that serve to shorten start-up time and automatically optimize operation parameters are installed in T-Point 2. Mitsubishi Power will also be training its AI applications, allowing T-Point 2 to eventually become the world’s first autonomous combined cycle power plant.

Search for products

Back to Top
Product has been added to your cart